Introducción al módulo del sistema operativo Python

I

Introducción

Python es uno de los lenguajes más utilizados en los últimos tiempos para diversas tareas como procesamiento de datos, análisis de datos y creación de sitios web. En este proceso, hay varias tareas que dependen del sistema operativo. Python permite al desarrollador usar varias funcionalidades dependientes del sistema operativo con el módulo Python os. Este paquete abstrae las funcionalidades de la plataforma y proporciona las funciones de Python para navegar, crear, eliminar y modificar archivos y carpetas. En este tutorial, uno puede esperar aprender cómo importar este paquete, sus funcionalidades básicas y un proyecto de muestra en Python que usa esta biblioteca para una tarea de fusión de datos.

Algunas funciones básicas

Exploremos el módulo con un código de ejemplo.

Importar la biblioteca:

import os

Consigamos la lista de métodos que podemos usar con este módulo.

print(dir(os))

Salida:

['DirEntry', 'F_OK', 'MutableMapping', 'O_APPEND', 'O_BINARY', 'O_CREAT', 'O_EXCL', 'O_NOINHERIT', 'O_RANDOM', 'O_RDONLY', 'O_RDWR', 'O_SEQUENTIAL', 'O_SHORT_LIVED', 'O_TEMPORARY', 'O_TEXT', 'O_TRUNC', 'O_WRONLY', 'P_DETACH', 'P_NOWAIT', 'P_NOWAITO', 'P_OVERLAY', 'P_WAIT', 'PathLike', 'R_OK', 'SEEK_CUR', 'SEEK_END', 'SEEK_SET', 'TMP_MAX', 'W_OK', 'X_OK', '_Environ', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_execvpe', '_exists', '_exit', '_fspath', '_get_exports_list', '_putenv', '_unsetenv', '_wrap_close', 'abc', 'abort', 'access', 'altsep', 'chdir', 'chmod', 'close', 'closerange', 'cpu_count', 'curdir', 'defpath', 'device_encoding', 'devnull', 'dup', 'dup2', 'environ', 'errno', 'error', 'execl', 'execle', 'execlp', 'execlpe', 'execv', 'execve', 'execvp', 'execvpe', 'extsep', 'fdopen', 'fsdecode', 'fsencode', 'fspath', 'fstat', 'fsync', 'ftruncate', 'get_exec_path', 'get_handle_inheritable', 'get_inheritable', 'get_terminal_size', 'getcwd', 'getcwdb', 'getenv', 'getlogin', 'getpid', 'getppid', 'isatty', 'kill', 'linesep', 'link', 'listdir', 'lseek', 'lstat', 'makedirs', 'mkdir', 'name', 'open', 'pardir', 'path', 'pathsep', 'pipe', 'popen', 'putenv', 'read', 'readlink', 'remove', 'removedirs', 'rename', 'renames', 'replace', 'rmdir', 'scandir', 'sep', 'set_handle_inheritable', 'set_inheritable', 'spawnl', 'spawnle', 'spawnv', 'spawnve', 'st', 'startfile', 'stat', 'stat_float_times', 'stat_result', 'statvfs_result', 'strerror', 'supports_bytes_environ', 'supports_dir_fd', 'supports_effective_ids', 'supports_fd', 'supports_follow_symlinks', 'symlink', 'sys', 'system', 'terminal_size', 'times', 'times_result', 'truncate', 'umask', 'uname_result', 'unlink', 'urandom', 'utime', 'waitpid', 'walk', 'write']

Ahora, usando el getcwd método, podemos recuperar la ruta del directorio de trabajo actual.

print(os.getcwd())

Salida:

C:UsershpandyaOneDriveworkPharos.shos_pythonos_pythonProject

Enumerar carpetas y archivos

Hagamos una lista de las carpetas / archivos en el directorio actual usando listdir:

print(os.listdir())

Salida:

['Data', 'Population_Data', 'README.md', 'tutorial.py', 'tutorial_v2.py']

Como puede ver, tengo 2 carpetas: Data y Population_Data. También tengo 3 archivos: README.md archivo de rebajas y dos archivos de Python, a saber, tutorial.py y tutorial_v2.py.

Para obtener la estructura de árbol completa de la carpeta de mi proyecto, escribamos una función y luego usemos os.walk() para iterar sobre todos los archivos en cada carpeta del directorio actual.

# function to list files in each folder of the current working directory

def list_files(startpath):
    for root, dirs, files in os.walk(startpath):
        # print(dirs)
        if dir!= '.git':
            level = root.replace(startpath, '').count(os.sep)
            indent=" " * 4 * (level)
            print('{}{}/'.format(indent, os.path.basename(root)))
            subindent=" " * 4 * (level + 1)
            for f in files:
                print('{}{}'.format(subindent, f))

Llame a esta función usando la ruta del directorio de trabajo actual, que vimos cómo hacer antes:

startpath = os.getcwd()
list_files(startpath)

Salida:

Project/
    README.md
    tutorial.py
    tutorial_v2.py
    Data/
        uscitiesv1.4.csv
    Population_Data/
        Alabama/
            Alabama_population.csv
        Alaska/
            Alaska_population.csv
        Arizona/
            Arizona_population.csv
        Arkansas/
            Arkansas_population.csv
        California/
            California_population.csv
        Colorado/
            Colorado_population.csv
        Connecticut/
            Connecticut_population.csv
        Delaware/
            Delaware_population.csv
        ...

Nota: La salida se ha truncado por brevedad.

Como se ve en la salida, los nombres de las carpetas terminan con un / y los archivos dentro de las carpetas se han sangrado cuatro espacios a la derecha. los Data la carpeta tiene un archivo csv llamado uscitiesv1.4.csv. Este archivo tiene datos sobre la población de cada ciudad de los Estados Unidos. La carpeta Population_Data tiene carpetas para los estados, que contienen archivos csv separados para los datos de población de cada estado, extraídos de uscitiesv1.4.csv.

Cambiar directorio de trabajo

Cambiemos el directorio de trabajo y entremos en el directorio de datos con el estado de “Nueva York”.

os.chdir('Population_Data/New York')

Ahora ejecutemos el list_files método de nuevo, pero en este directorio.

list_files(os.getcwd())

Salida:

New York/
    New York_population.csv

Como puede ver, hemos entrado en el New York carpeta debajo Population_Data carpeta.

Crear una estructura de directorio única y anidada

Ahora, creemos un nuevo directorio llamado testdir en este directorio.

os.mkdir('testdir')
list_files(os.getcwd())

Salida:

New York/
    New York_population.csv
    testdir/

Como puede ver, crea el nuevo directorio en el directorio de trabajo actual.

Creemos un directorio anidado con 2 niveles.

os.mkdir('level1dir/level2dir')

Salida:

Traceback (most recent call last):

  File "<ipython-input-12-ac5055572301>", line 1, in <module>
    os.mkdir('level1dir/level2dir')

FileNotFoundError: [WinError 3] The system cannot find the path specified: 'level1dir/level2dir'

Recibimos un error. Para ser específicos, obtenemos un FileNotFoundError. Podrías preguntarte por qué un FileNotFound error cuando intentamos crear un directorio.

La razón: el módulo de Python busca un directorio llamado level1dir para crear el directorio level2dir. Ya que level1dir no existe, en primer lugar, lanza un FileNotFoundError.

Para propósitos como este, el mkdirs() En su lugar, se utiliza la función, que puede crear varios directorios de forma recursiva.

os.makedirs('level1dir/level2dir')

Verifique el árbol de directorios actual,

list_files(os.getcwd())

Salida:

New York/
    New York_population.csv
    level1dir/
        level2dir/
    testdir/

Como podemos ver, ahora tenemos dos subdirectorios bajo New York carpeta. testdir y level1dir. level1dir tiene un directorio debajo llamado level2dir.

Eliminar directorios únicos y múltiples de forma recursiva

los os El módulo también tenía métodos para modificar o eliminar directorios, que mostraré aquí.

Ahora, eliminemos los directorios que acabamos de crear usando rmdir:

os.rmdir('testdir')

Verifique el árbol de directorios actual para verificar que el directorio ya no existe:

list_files(os.getcwd())

Salida:

New York/
    New York_population.csv
    level1dir/
        level2dir/

Como se puede ver, testdir ha sido eliminado.

Intentemos eliminar la estructura de directorios anidada de level1dir y level2dir.

os.rmdir('level1dir')

Salida:

OSError
Traceback (most recent call last)
<ipython-input-14-690e535bcf2c> in <module>()
----> 1 os.rmdir('level1dir')

OSError: [WinError 145] The directory is not empty: 'level1dir'

Como se ve, esto arroja un OSError y con razón. Dice level1dir el directorio no está vacío. Eso es correcto porque tiene level2dir debajo de ello.

Con el rmdir método no es posible eliminar un directorio que no esté vacío, similar a la versión de línea de comandos de Unix.

Como el makedirs() método, intentemos rmdirs(), que elimina directorios de forma recursiva en una estructura de árbol.

os.removedirs('level1dir/level2dir')

Veamos de nuevo la estructura del árbol de directorios:

list_files(os.getcwd())

Salida:

New York/
    New York_population.csv

Esto nos lleva al estado anterior del directorio.

Ejemplo con procesamiento de datos

Hasta ahora hemos explorado cómo ver, crear y eliminar una estructura de directorio anidada. Ahora veamos un ejemplo de cómo os El módulo ayuda en el procesamiento de datos.

Para eso vamos a subir un nivel en la estructura de directorios.

os.chdir('../')

Con eso, veamos nuevamente la estructura del árbol de directorios.

list_files(os.getcwd())

Salida:

Population_Data/
    Alabama/
        Alabama_population.csv
    Alaska/
        Alaska_population.csv
    Arizona/
        Arizona_population.csv
    Arkansas/
        Arkansas_population.csv
    California/
        California_population.csv
    Colorado/
        Colorado_population.csv
    Connecticut/
        Connecticut_population.csv
    Delaware/
        Delaware_population.csv
...

Nota: La salida se ha truncado por brevedad.

Combinemos los datos de todos los estados, iterando sobre el directorio de cada estado y fusionando los archivos CSV de la misma manera.

import os
import pandas as pd

# create a list to hold the data from each state
list_states = []

# iteratively loop over all the folders and add their data to the list
for root, dirs, files in os.walk(os.getcwd()):
    if files:
        list_states.append(pd.read_csv(root+"https://Pharos.sh.com/"+files[0], index_col=None))

# merge the dataframes into a single dataframe using Pandas library
merge_data = pd.concat(list_states[1:], sort=False)

Gracias en parte al os módulo que pudimos crear merge_data, que es un marco de datos que contiene datos de población de cada estado.

Conclusión

En este artículo, exploramos brevemente diferentes capacidades de las funciones integradas de Python os módulo. También vimos un breve ejemplo de cómo se puede utilizar el módulo en el mundo de la ciencia de datos y el análisis. Es importante entender que os tiene mucho más que ofrecer y, en función de la necesidad del desarrollador, se puede construir una lógica mucho más compleja.

 

About the author

Ramiro de la Vega

Bienvenido a Pharos.sh

Soy Ramiro de la Vega, Estadounidense con raíces Españolas. Empecé a programar hace casi 20 años cuando era muy jovencito.

Espero que en mi web encuentres la inspiración y ayuda que necesitas para adentrarte en el fantástico mundo de la programación y conseguir tus objetivos por difíciles que sean.

Add comment

Sobre mi

Últimos Post

Etiquetas

Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos y para mostrarte publicidad relacionada con tus preferencias en base a un perfil elaborado a partir de tus hábitos de navegación. Al hacer clic en el botón Aceptar, aceptas el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad